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We test the multiscaling issue of diffusion-limited-aggregation �DLA� clusters using a modified algorithm.
This algorithm eliminates killing the particles at the death circle. Instead, we return them to the birth circle at
a random relative angle taken from the evaluated distribution. In addition, we use a two-level hierarchical
memory model that allows using large steps in conjunction with an off-lattice realization of the model. Our
algorithm still seems to stay in the framework of the original DLA model. We present an accurate estimate of
the fractal dimensions based on the data for a hundred clusters with 50 million particles each. We find that
multiscaling cannot be ruled out. We also find that the fractal dimension is a weak self-averaging quantity. In
addition, the fractal dimension, if calculated using the harmonic measure, is a nonmonotonic function of the
cluster radius. We argue that the controversies in the data interpretation can be due to the weak self-averaging
and the influence of intrinsic noise.
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I. INTRODUCTION

The DLA model �1� plays the same role in the physics of
structure growth in two-dimensions �2� as the Ising model
plays in the theory of phase transitions. It catches the main
features of the random growth and is quite simple in defini-
tion. However, this model has still not been solved analyti-
cally more than twenty years after its introduction �1�. Direct
simulations of the original model and calculations using the
conformal-mapping technique �3� are the two main methods
for investigating DLA structures.

It is commonly believed that DLA clusters are random
fractals �1,2�, and the accepted estimate for the fractal di-
mension is D=1.71±0.01. The analytic result �4� predicts
D=17/10 in agreement with the numerical estimates. The
surface of a DLA cluster demonstrates the multifractal prop-
erties obtained in simulations �5,6� and supported analyti-
cally �7�.

Several groups claim DLA clusters have multiscaling
properties �8–13�: that the penetration depth � is scaled dif-
ferently from the deposition radius Rdep and that a whole set
of scaling exponents exists within the framework of multi-
scaling. Recently, these claims were refuted in papers by
Somfai, Ball, Bowler, and Sander �14,15�.

The off-lattice killing-free algorithm, our implementation
of the DLA algorithm, allows the generation of a large num-
ber of huge clusters and calculation of the fractal dimensions
of the quantities mentioned above. Our numerical results do
not support the arguments presented in Refs. �14,15� but fa-
vor the early results �8–12�.

The multiscaling that was “suspected” in those papers was
attributed in Refs. �14,15� to the strong lattice-size effects
they advocated, with the correction-to-scaling exponent 1 /3.
We do not find any evidence for that in our data. Instead, we
prefer to attribute the spreading of the fractal dimension val-
ues as estimated from the different quantities to the weak-
self-averaging of the fractal dimension. Its relative fluctua-

tion decays with the number of particles approximately as
FD= ��D2�− �D�2� / ��D�2��1/N� with ��0.35±0.04 for the
large cluster sizes, i.e., with the exponent about three times
smaller than would be expected for the usual averaging of
the quantity. Thus one can expect large fluctuations of the
fractal dimension as estimated from the different quantities,
with different methods, and from different cluster sizes. An
alternative and more naive view is to say that the last expo-
nent is also evidence for the multiscaling properties of DLA
cluster.

Our algorithm is off lattice with memory organization
similar to that used in the Ball and Brady algorithm �16�. The
main differences are �i� we use only two layers in the
memory hierarchy, which seems optimal for reducing
memory usage, keeping the overall efficiency of simulations
high; �ii� we use bit mapping for the second layer of memory
to reduce the total memory used by the simulation program;
and �iii� we use large walk steps. We also use a recursive
algorithm for the free zone tracking.

The essential feature of our algorithm is that we modified
the rule for the particles that go far from the cluster. We
never kill any particle at the outer circle but return them to
the birth circle �17,18� with an evaluated probability. This
procedure eliminates the effect of the potential �19� distor-
tion �and thus of the cluster harmonic measure�, keeping our
algorithm in the same universality class.

In this paper we present all details of our algorithm. We
believe that some details may be important both for under-
standing the results and for comparing the results properly.
We briefly discuss the essentials of our implementation of
the off-lattice killing-free algorithm in Sec. II, accompanied
with some technical details on the derivation of the return-
on-birth-circle probability given in Appendix A and details
on the memory model in Appendix B. Various methods for
estimating the fractal dimension are described in Sec. III and
compared with those from other off-lattice estimations. We
discuss fluctuations of the fractal dimension in Sec. IV and
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the multiscaling issue in Sec. V. The discussion in Sec. VI
concludes our paper.

II. KILLING-FREE OFF-LATTICE ALGORITHM

A cluster grows according to the following rules. �1� We
start with the seed particle at the origin. �2� A new particle is
born at a random point on the circle of radius Rb. �3� A
particle moves in a random direction; the step length is cho-
sen as big as possible to accelerate simulations. �4� If a par-
ticle walks out of the circle of radius Rd�Rb, it is returned to
the birth radius Rb at the angle �� taken from distribution
�A6� and relative to the last particle coordinate. �5� If particle
touches a cluster, it sticks. �6� The cluster memory is up-
dated. Steps from �2� through �6� are repeated N times.

The difference from the traditional DLA algorithm is in
step 4. We remind the reader that in the original algorithm, a
particle is killed when it crosses Rd and the new one starts a
walk from a random position on the circle Rb, i.e, at the
position �Rb ,�random�. Clearly, the rule being perfect in the
limit Rd→� will influence the growth stability when Rd is
finite.

Instead, if the particle crosses Rd to a position with r
�Rd, we use the probability �17,18� as determined by ex-
pression �A6� in Appendix A with x=r /Rb to obtain the par-
ticle position. The particle then walks from the position
�Rb ,��+��, assuming �r ,�� is the old particle position. De-
tails on obtaining expression �A6� and on generating random
numbers with given probability are presented in Ref. �17�
and in Appendix A.

During the cluster growth, the empty space between clus-
ter branches also grows. A special organization of the
memory is implemented to avoid long walks in the empty
space. We modify the hierarchical memory model �16�, using
only a two-layer hierarchy �see Appendix B for details� and a
bit-mapping technique for the second layer to reduce total
memory.

III. FRACTAL DIMENSION ESTIMATIONS

In this section we present the results on the estimation for
the DLA cluster fractal dimension analyzing various cluster
lengths: deposition radius Rdep, mean square radius R2, gyra-
tion radius Rgyr, effective radius Reff, and ensemble penetra-
tion depth �. The dependence of the length R on the number

of particles N gives estimation of the fractal dimension
through the relation R�N1/D. There are two ways �see Table
I� to extract this dependence. The first is to average over the
ensemble of clusters, for example, �r�N��=�i=1

K ri�N� /K,
where the sum is over K clusters and ri�N� is the position of
the Nth particle in the ith aggregate. The second is to average
over the harmonic measure, which is the probability of stick-
ing at the point r, for example, Rdep=	rdq.

We use data from K=100 clusters, each built up by the
algorithm described in Sec. II with 5�107 particles. A typi-
cal cluster �20� is shown in Fig. 1. Estimations of the fractal
dimension from the various cluster lengths using both ways
of averaging are shown in Table I. The errors given in pa-
rentheses as corrections to the last digit include both statis-
tical errors and fitting errors. In averaging over the harmonic
measure �the last column in Table I with the preceding defi-
nition column�, we first estimate D from a single cluster �21�
and than average over the K=100 samples.

TABLE I. Estimates of the fractal dimension D extracted with the fit N�RD to the dependence of the
various lengths R �deposition radius Rdep, mean square radius R2, gyration radius Rgyr, effective radius Reff,
and ensemble penetration depth �� on the number of particles N. The third �fifth� column is the fit to the data
calculated with the definition given in the second �fourth� column.

Definition 1 D Definition 2 D

Rdep �r� 1.70942�46� �	rdq� 1.70922�97�
R2 
�r2� 1.71003�45� �
	r2dq� 1.7087�11�
Rgyr 
1 �N�k=1

N �r2�k 1.71008�96�
Reff �exp�	 ln r dq�� 1.70944�87�
� 
R2

2−Rdep
2 1.74�3� 1.69�7�

FIG. 1. �Color online� Typical DLA cluster with 5�107 par-
ticles grown using killing-free off-lattice algorithm. Color denotes
particle age.
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The estimations from all lengths agree well with each
other within the error and with the most accepted value of
the fractal dimension D=1.711 �see, e.g., Ref. �14��. The
error in measuring the penetration depth is much higher be-
cause of its complex structure.

It was proposed in Refs. �14,15� that the various lengths
depend on the number of particles with the correction term

R�N� = R̂N1/D�1 + R̃N−	� , �1�

and that exponent 	 is the same �	=0.33� for all quantities.
The fit of the data to expression �1� with the fixed values

of D=1.711 and 	=0.33 is presented in Table II. Table II
here should be compared with Table I in Ref. �15�. The dif-

ference in the values of R̂ is about factor of 2 and probably
because of the different units of the particle size used in
simulations. We fix to unity the particle radius and not the
particle diameter. Result of the fit is extremely sensitive to
the value of D used. For example, if we fix fractal dimension
D to the value 1.710 which one may suggest from our Table

I, the values of R̂ and R̃ for the fit to Rgyr changed from those
in the third line of our Table II to 0.958�1� and −0.06�1�.
Thus, values of R̂ differ by six standard deviations, and val-

ues of R̃ by sixteen standard deviations.
If we fit our data for the different cluster realizations to

the expression �1� without fixing D and 	, then we find a

large fluctuation of R̃ around the zero value. If we suppose
that authors of Ref. �15� fixed diameter to unity, we may

conclude that our data for R̂ from Table II coincide with the
corresponding data in Table I of Ref. �15� and not the data

for R̃. We can therefore conclude that the results of fitting to
expression �1� are inconclusive and that the values of the

coefficient R̃ presented in Table II are just random. These
large fluctuations can be understood in the framework of the
weak self-averaging of the fractal dimension, which we de-
scribe in the next section.

IV. WEAK SELF-AVERAGING OF D

We check how the fluctuations of the measured fractal
dimension D depend on the system size N. By analogy with
thermodynamics, the relative fluctuation FD= �D2�
− �D�2� / ��D�2 of the quantity D should decrease as the in-

verse system size. For full self-averaging of the fractal di-
mension FD�1/N�1/RD can be expected. In the case of a
slower decay FD�1/N� with �
1, one can say that self-
averaging of D still occurs and that it is weak self-averaging.

We extract the fractal dimension from the analysis of the
clusters in two ways. First, we calculate the number N of
particles inside the circle of radius R for the given cluster.
The slope of this curve on a log-log plot gives Di. The fractal
dimension Di as a function of N is denoted as Di�N�, where
i is the number of clusters, i=1,2 , . . . ,K, and K=100. Then
we average Di�N� over the ensemble of K clusters D�N�
= �1/K��i=1

K Di�N�. The fractal dimension D�N� is plotted in
Fig. 2 with a bold line as a function of the system size N. To
better understand the behavior of D, we also present the re-
sults of averaging over smaller ensembles. We divide the
whole ensemble with 100 clusters into five independent
groups. Averaging over each group gives five different
curves for D�N�, which exhibit strong fluctuations. Error bars
are computed as fluctuations of Di�N� in the ensemble of K
=100 clusters.

For sufficiently large N�105, the values of D�N� vary
mainly in the range 1.695–1.715, which is about the usually
accepted value of the fractal dimension. The drop off of the
curve D�N� at N�2�107 is due to the influence of the clus-
ter boundary: the most active zone of cluster growth, which
is underdeveloped in comparison with the rest of the cluster,
is now inside R.

Relative fluctuations FD of that quantity are shown in Fig.
3. The bold line represents 100-cluster ensemble averaging
compared with five lines computed using five 20-cluster
groups. Fluctuations decrease with the exponent �
=0.33±0.02. This is three times slower decreasing than ex-
pected in the case of full self-averaging.

Next, we analyze self-averaging of the fractal dimension
as extracted from the dependence of the deposition radius
Rdep�N� calculated by averaging over the harmonic measure.
This quantity averaged over the ensemble of 100 clusters is

TABLE II. Coefficients of correction to scaling fits �Eq. �1��
with fixed D=1.711 and 	=0.33. The definitions of various length
R are given in Table I.

Definition 1 Definition 2

R̂ R̃ R̂ R̃

Rdep 1.394�2� 0.59±0.28 1.398�2� 0.006±0.030

R2 1.414�2� 0.22±0.27 0 0

Rgyr 0.964�1� −0.22±0.01 0 0

� 0.239�1� −13±1 0 0

FIG. 2. �Color online� Fractal dimension D�N� as a function of
the number N of particles inside the radius R. Solid curve with error
bars represents D�x� averaged over 100 clusters. Another curves are
the averages over five different 20-cluster ensembles.
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plotted in Fig. 4 as a function of the system size Dharm�N�. It
exhibits some “oscillation” around the value 1.708, which is
very close to the accepted DLA fractal dimension. Averages
over smaller ensembles also demonstrate this feature. It is
not clear how this quantity will change as the system size
increases further.

Relative fluctuations FDharm
of Dharm are shown in Fig. 5.

There are two regimes of the FDharm
decay. First, for the

cluster sizes N
106, it decays with �=0.71±0.02, much
faster than for the FD as estimated with the conventional
counting method described above with ��0.33. The next
regime, for the larger system sizes N�106, shows slower
decay with the exponent �=0.38±0.01, close to those esti-
mated by the traditional counting method �22,23�. In prac-
tice, the exponent value ��0.33 means that to obtain more
accurate estimate of the fractal dimension, one has to in-
crease the number of particles in the cluster by three orders
of magnitude.

V. MULTISCALING

It was long discussed that DLA clusters are not simple
fractals �8–12� and, for example, that the fractal dimension
depends continuously on the normalized distance from the
cluster origin �11�. It was suggested in Ref. �11� that the
density of particles at a distance r from the origin obeys the
equation g�r ,Rgyr�=c�x�Rgyr

D�x�−d, where x=r /Rgyr, with a non-
trivial �nonconstant� multiscaling exponent D�x� �lines with
open symbols in Fig. 6�.

Quite recently, Somfai et al. �14,15� claimed that the mul-
tiscaling picture is wrong and is misled by finite-size tran-
sients. They argued for a strong dependence of the radius
estimators �Rdep, R2, etc., see Table II� on the system size Eq.

FIG. 3. �Color online� Decay of the relative fluctuations of the
fractal dimension shown in Fig. 2. The symbols are the same as in
Fig. 2. The solid line in the inset is the linear fit to the open circles.

FIG. 4. �Color online� Fractal dimension Dharm�N� as a function
of the number of particles in the cluster used to estimate Rdep with
averaging over the harmonic measure. The symbols are the same as
in Fig. 2.

FIG. 5. �Color online� Decay of the relative fluctuations of the
fractal dimension Dharm�N� shown in Fig. 4. The symbols are the
same as in Fig. 2. Inset: the linear fit to the data with N up to 5
�105 and the linear fit to the data with larger N.

FIG. 6. �Color online� Multiscaling fractal dimension D�x� for
different cluster sizes: solid triangles, N=106; solid squares, N
=107; stars, N=5�107; solid circles, limit of our data for N→�;
open symbols are from Ref. �11�; open squares, N=104 square lat-
tice; open circles, N=105 off-lattice.
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�1�, where the leading subdominant exponent is estimated as
	�0.33.

It is well known �8,15,24� that the fractal dimension D�x�
can be found using the probability P�r ,N� for the Nth par-
ticle to be deposited within a shell of width dr at a distance
r from the seed. The simplest and most obvious form of the
probability is P�r ,N�= �1/��N��f��r−Rdep�N�� /��N��, where
f�y� is Gaussian. Practically, the Gaussian distribution can be
obtained by averaging over a large number of clusters. For
the single-cluster realization this function has some particu-
lar form reflecting the details of the cluster growth as shown
in Fig. 7, in which each local maximum is associated with an
actively growing branch.

In Ref. �15� Somfai et al. computed D�x� from the Gauss-
ian probability P�r ,N� and D�x� with corrections to scaling
coincides well with the numerical results of Amitrano et al.
�11�. Somfai et al. state that D�x� tends to a constant value as
N→�. In other words, Somfai et al. advocate that multiscal-
ing is transient and is an artifact of the finite size of the DLA
clusters.

In contrast, our numerical results demonstrate that �1�
there is no evidence for the finite-size corrections with the
exponent 	=0.33, �2� D�x� seems not to tend to a constant,
and �3� it is not correct to use the Gaussian probability
P�r ,N� to compute D�x� for the DLA model.

Gaussian distribution does not reflect details of the DLA
cluster because it is the outcome of the the averaging over a
large number of clusters. After such averaging all details of
the random nature of the growth of a particular cluster are
washed out, and the Gaussian distribution is just the result of
the central limit theorem. There are some indications by
Hastings �4�, who computed DLA fractal dimension from
field theory, that the Gaussian distribution by itself is insuf-
ficient for describing DLA clusters, and some noise must be
added to obtain a model corresponding to the DLA model. To
some extent, the local maxima in Fig. 7 are due to that noise,
in contrast to the distribution averaged over the cluster en-
semble, which is smooth.

Accordingly, D�x� calculated from the averaged distribu-
tion would be constant in the limit of large N. We can there-

fore say that multiscaling comes from the fluctuations �natu-
ral noise� of the DLA cluster growth process.

The fractal dimension D�x� for different cluster sizes are
shown in Fig. 6 together with the results from Ref. �11�.
There is a notable maximum in D�x� at around x=1.4, and its
size does not change significantly with the number of par-
ticles in a cluster. We note that the position of the maximum
can be found from the ratio of �Rdep−�� to Rgyr. In our simu-
lations, it equals 1.19, which coincides well with the data in
Fig. 6.

The maximum seems to occur because growth is mostly
completed in the region r
Rdep−�, and the fractal dimen-
sion D�x� decrease to the left of x= �Rdep−�� /Rgyr in the ac-
tively growing region D�x� because of the lack of particles
there. For small x, i.e., for r�Rgyr, no new particles are
being added, and D�x� is the same for different cluster sizes.

We note that the prediction of Somfai et al. for D�x� with
a system size N=107 is quite smaller than the one computed
by us and presented in Fig. 6. We also estimate limit of the
three curves plotted in Fig. 6, taking limit of N→� at the
fixed value of x, and plot result with the solid circles in Fig.
6. Thus, our data does not demonstrate tendency of D�x� to a
constant value, and rather support our observation that the
dynamic growth of the cluster is dominated by the active
zone, and maximum in D�x� reflects this nature of DLA. At
the same time we have to note that accuracy of the data
presented here is not enough for the final decision, and fur-
ther investigation with the higher accuracy has to be done.

VI. SUMMARY

We have implemented modifications to the DLA algo-
rithm that help us to grow large DLA clusters and test some
recent claims about its properties. In our experiments, aggre-
gates do not exhibit corrections to scaling laws. Neverthe-
less, the results show multiscaling properties. This means
that there should be another way for such a clusters to ap-
pear. We tried to analyze the processes responsible for mul-
tiscaling. We will address this question in future research.
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APPENDIX A: PROBABILITY TO BE ALIVE ON THE
BIRTH CIRCLE

The main result of this Appendix is expression �A6�. The
same expression was obtained earlier �25� in Refs. �17,18�.
We found our result is still worth publishing, since we derive
it from a different point of view.

We consider a particle at some position �r ;�=0� outside
circle of radius Rb, r�Rb. The particle moves randomly, and
its size and step is much smaller than r and Rb. The question
is, what is the probability for a particle to intersect the circle

FIG. 7. Probability P�r� for a particle to stick at the distance r,
computed for a single DLA cluster.
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Rb at the angle ��? Clearly, for the particles walking from
infinity, i.e., rRb, that distribution is uniform in �−� ;��:

P���d� =
1

2�
d� . �A1�

The conformal map

w = Rb
zr + Rb

r + zRb
�A2�

maps infinity to �r ,0� and the unit circle to the circle of
radius Rb. Transformation �A2� changes probability �A1� to
the modulus of derivative of the conformal map

dz

dw
=

Rb
2 − r2

Rb�r − w�2 . �A3�

Substituting w=Rb exp�i��� in Eq. �A3�, we obtain the re-
sulting probability

P���� =
const

x2 − 2x cos �� + 1
�A4�

as a function of the ratio x=r /Rb�1. This is a probability for
the particle beginning its walk at the point �r ,0� outside Rb to
intersect circle Rb at the angle �� �see Fig. 8�.

The constant in Eq. �A4� is associated with the probability
for the particle to move to infinity. It can be identified using
the analogy between the DLA model and Laplacian growth
as was pointed out in Ref. �26� for the dielectric breakdown
model, which is a generalization of the DLA model.

The probability that the particle sticks somewhere to the
cluster is proportional to the electrical field at that point. We
consider three circles of radii R1, R2, and R3, R1
R2
R3.
The external circles R1 and R3 are set under the potential
�=0, and particles stick one of them. The circle R2 �place of
a birth for particles� is set with �=1. The solution of the
Laplace equation �2�=0 with the above boundary condi-
tions gives the distribution of the potential and thus of the
electrical field E. The probability for the particle to stick on
the circle R1 would be P1=const�	r=R1

Ed2 ·r and similarly
for P3. The ratio of these probabilities is

P3

P1
=

ln
R2

R1

ln
R3

R2

. �A5�

The probability P3 vanishes as R3→�: P3→0. This means
that all particles starting on the birth radius should irrevers-
ibly collide with a cluster and the constant in Eq. �A4� is
easily found by normalizing the probability const= �x2

−1� /2�. The final expression for the probability

P���� =
1

2�

x2 − 1

x2 − 2x cos �� + 1
�A6�

provides correct values for both the limits x→� and x→1.
The same expression for probability was described in Ref.
�17�, but it was obtained other way. Transformation

f�u� = 2 arctan� x − 1

x + 1
tan�u�/2��

maps uniformly distributed in interval �−1,1� random num-
ber u to random number with distribution �A6�.

APPENDIX B: MEMORY ORGANIZATION

Step 3 of the algorithm described in Sec. II essentially
contains two routines. We must choose, first, the direction of
the random walk and, second, the walk length. The direction
of the walk is chosen uniformly in �0;2��. Because the mo-
tion is uniform in direction, we can increase the step, but
only if the particle is far away from the cluster �in our simu-
lations we choose that distance such that particle is more
than five units away from the cluster, otherwise, its step is
one unit of length�. The length for the big step is chosen with
the condition that the walk should not intersect any particles
of the cluster. Therefore, the distance to the cluster dpc is
evaluated, and the step length is taken as that distance.

The reason for implementing variable step length is as
follows. Most of the time the particle is moving far away
from the cluster, and choosing a step length of the order of
the particle distance from the cluster accelerates simulations.

FIG. 8. Sketch of probability P���� of the walk intersection of
the circle Rb with the initial position of the particle at �r ,0�.
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To realize all the proposed improvements efficiently we
must organize memory in a special manner. When the par-
ticle moves, we must know whether it collides with a cluster,
and to check this, we must iterate over all particles. Such an
approach is rather unreasonable and we must therefore re-
strict the number of particles to test. This is easily done by
dividing the space into square cells, each about twenty units
of length. Each cell saves information about particles that
stuck in the region covered by it. We therefore need only
check cells that are in the region of one step.

This model also improves the process of seeking the size
of free space for the big step. Finding the distance from the
current position to the cluster precisely is a difficult task, but
it suffices in most cases to know it with an accuracy esti-
mated from below, the size of one cell. Figure 9 shows how
this is done. Cells are plotted in the picture as squares with
bold lines. They are marked with numbers showing their
distance from the particle location. For simplicity, cells with
the same number are thought to be at the same distance from
the particle. Occupied cells are shaded. In this example the
particle is allowed to jump with the step length L−2R, where
L is the cell size and R the particle radius. The distance L is
the radius of the inscribed circle with a center somewhere in
cell 0 �in the worst case, the center lies on the border of cell
0�. This length should be reduced because cells save only
particle centers and there could be a projection of a particle
into another cell with a size of R. To simplify the algorithm
we seek the step length only using the free/occupied cells
picture. The first step is to check whether there are other

particles in the cell we are now in, then we should check
cells marked with 1, then marked with 2 �not shown in the
picture�, and so on until we find an occupied cell.

During DLA growth, the intervals between branches in-
crease notably, and the time to traverse all cells while seek-
ing an occupied one also increases. To reduce the influence
of such a process, Ball and Brady �16� developed a hierar-
chical memory model, where one cell is divided into smaller
subcells and so on. This approach seems rather memory con-
sumptive: in growing a large cluster, it would become a
bottleneck of an algorithm.

The desired effect can be achieved in another way. Be-
cause the cell size is much bigger than the particle size, the
distribution of free cells changes slowly, and the process of
seeking the maximum free space could be started not from
the particle position but from the free line achieved in the
previous search from this origin. To implement this we must
save the value of free space around each cell. If this infor-
mation is unknown, i.e., it is the first time we seek the maxi-
mum step length from the current cell, we should traverse all
cells from the beginning; otherwise we start from the line
previously saved and move to the center.

The cell size is chosen as follows. It should not be very
small: a small size results in high memory consumption and
a rapid change of the distribution of free cells. On the other
hand, its size restricts the precision of the length we find for
the big step, i.e., there is a region of cell size near the cluster
where particles can only move with small steps. To avoid this
last constraint, we use second-layer information. Similar to
Ball and Brady, we divide the cells into smaller ones. To
minimize memory consumption, we realize them as a 32 bit
integer, where each bit shows whether the corresponding
subcell is occupied. Each big cell can therefore be divided
into not more than 25 subcells.

As mentioned above, the second-layer information is only
used when the particle moves near the cluster, where the
accuracy given by the first layer is insufficient. Figure 9
shows large cells �bold borders� and small cells. Using the
first layer we find that only the space inside the dashed circle
is free. The second layer gives a more precise result: the
particle can jump up to the bold circle.
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